多库



    新闻资讯

    为您分享多库最新动态

    您当前所在的位置:首页 > 新闻资讯
    现代建筑中不可或缺的氟材料:FEP!
    时间 :2023-08-08 查看:1089

    2019年4月15日 ,法国巴黎圣母院发生了火灾,塔尖倒塌,受损严重。巴黎圣母院约建于1163年到1250年间,这座花费了一百八十多年才建成的哥特式建筑,承载着法国的艺术和历史 ,是巴黎的象征之一 。据报道,火灾蔓延速度极快,从起火到火焰窜上房顶仅仅用了一两分钟,圣母院顶楼的电线短路可能是引发火灾的原因。

    此次让全世界人民痛惜的大火,也让我们反思,该如何确保建筑中的电缆安全。

    怎样的电缆是安全的

    建筑物的线缆就像人的神经系统,延伸到大楼每一个部分,防火低毒的线缆的重要性是不言而喻的 。

    2013年4月 ,湖北省襄阳一城市花园酒店因电线短路引起火灾,造成14人死亡、47人受伤。2018年8月,哈尔滨北龙汤泉休闲酒店着火,死亡20人 ,起火原因是风机盘管机组电气线路短路形成高温电弧。2018年12月,浙江台州一渔船因电线老化引发火灾,31人被救 ,1人遇难 。

    据中国消防数据披露 ,近年来电气火灾频发,每年的电气火灾占比同年火灾比例30%以上,其中,电气线路火灾又占电气火灾的60%以上 。电气火灾隐患 ,在我们身边几乎无处不在 。

    造成短路最常见的几个原因,一是输电线路使用过久,绝缘层老化、破裂 ,失去绝缘作用。二是电气线路与设备的质量 ,如绝缘材料绝缘性能欠佳、绝缘材料防火性能不达标、电气连接件接触不良等 。另外,乱拉乱接电线 ,使电线的外套机械损伤,引起短路。

    这几点恰恰是氟塑料电缆不可替代的优势所在。

    图片

    常见的氟塑料电缆聚全氟乙丙烯(FEP) ,最突出的特点是其优异的阻燃性能,它的氧指数为95,即只有在95%氧纯度的环境下才能燃烧 。即使在高温下熔融,也不会滴漏,不分解,可避免火焰间接向周边物质滴漏蔓延 ,把燃烧限制在局部范围内 ,不会导致周边环境温度的急剧升高,有利于尽快扑灭火势。

    另一个特点 ,是燃烧后的低烟性能,产生的烟雾量非常少,保证了火灾现场的透光度,为逃生争取宝贵的时间。

    以FEP为原料生产的电讯、电子计算机、报警电线 、电缆可不必用钢管保护,直接安装在楼板与吊顶天花板之间夹层空间内 ,非常方便。

    1992年 ,美国电器工业协会编写了通风电缆的说明书,规定由于高层建筑的防火绝缘等要求,高层建筑的通风电缆必须采用FEP为原料的电线电缆 ,目前美国已经成为FEP用量最多的国家。上海世博会中国馆用的最high等级的阻燃线缆 ,主要成分就是FEP。

    PTFE的又一个兄弟

    FEP是一种性能优异的氟塑料,是四氟乙烯和六氟丙烯共聚而成的。
    大约80多年前,化学家普伦基特在杜邦位于美国新泽西州的杰克逊实验室中发明了聚四氟乙烯树脂(PTFE)。随后 ,杜邦又在PTFE之外研发出一系列产品,其中就包括FEP(杜邦真的蛮厉害)。
    FEP是四氟乙烯和六氟丙烯的聚合物,所以既有四氟乙烯的优点 ,又具有热塑性塑料的良好的加工性能 。它的高绝缘性、阻燃性以及跟普通热塑性塑料一样良好的加工性能 ,在一定的程度上,可以弥补PTFE在加工性能方面的不足 。
    FEP的电绝缘性能和PTFE十分相近。它的介电系数从深冷到最high工作温度,从50Hz到1010Hz超高频的范围内几乎不变 ,仅2.1左右。
    它的耐热性能仅次于PTFE,能在-85至200℃的温度范围内连续使用。普通的昼夜温差或者四季变换造成的温度变化 ,对它几乎没有影响。在-250℃时仍保持有伸长率和一定的曲挠性,是其他各类塑料所不及的。
    它的耐化学稳定性与PTFE相似,除与高温下的氟元素、熔融的碱金属和三氟化氯等发生反应外,与其他化学药品接触时均不被腐蚀 。
    FEP具有与PTFE相似的特性,又有热塑塑料的良好加工工艺,使之成为代替PTFE的重要材料。具有耐高温、抗氧化、不易燃、氧指数高、能自熄等特点 ,是光纤通信电缆的理想用线。在电线电缆生产中广泛应用于高温高频下使用的电子设备传输线 ,电子计算机内部的连接线,航空宇宙用电线,及其他特种用途安装线、油矿测井电缆、微电机引出线等等。

    图片

    良好的信号传输功能及其他性能

    科学技术的发展 ,特别是军事工业 、宇航、航空、通信等事业的发展 ,对电线电缆提出了更高的要求。
    电线电缆是将电源与用电设备连接起来的材料,在整个系统中起着“神经”、“血管”作用 。航天飞机中 ,内部环境复杂,电线电缆除了考虑其电气性能 、机械性能和化学性能外,还要考虑电网络匹配关系、抗干扰能力、载流量大小 、使用环境、机械强度、电缆保护等因素。
    5G时代信号的传输速度远快于4G信号,要求材料对信号的干扰小、介电常数小,保证大数据传输不受干扰。对数据的处理及智能化反应的速度和稳定性,以及个体之间的数据传输提出了很高的要求。FEP制成的绝缘体,其介质稳定,传输衰减小、信号损失少 ,极小的延迟差,在线缆本身使用寿命、高频信号处理能力及抗外界干扰能力方面表现出色。

    FEP电线除质量轻外,传输速度也快,用它们做电缆绝缘层 ,有利于提高网络的寿命。采用FEP的数字通信电缆,已经用于建设高层建筑的高速局域网综合布线系统,快速、准确地传输语音 、图象和数据。

    在工业领域,尤其是声传感器生产中 ,FEP一直独占鳌头,广泛地用于制作各类电声和声电传感器,包括用于普通电话机和声控电话机 、对讲机、传真机 、助听器、声控玩具、声控开关和声控电脑的声传感器等 ,其覆盖面约占各类声传感器的80%以上。

    在医用领域,FEP在修补心脏瓣膜和细小气管中也有应用 ,并制成血液超低温贮存袋 。

    几个小故事

    故事一:2019年 ,西安交通大学和温州医科大学的研究人员开发了一种抗菌、抗紫外线的纳米敷料。在这项研究里 ,研究人员设计了一种热敏、可注射 、可自我修复以及基于粘多糖的FEP水凝胶敷料,用于促进血管生成和糖尿病伤口愈合。

    故事二:2015年,美国乔治亚理工学院的研究者开发了一种新型的键盘。键盘靠四层相互叠加的透明胶片运作 ,两层的铟锡氧化物起到电极的作用,被一层PET塑料分开。除了电极以外,一层FEP塑料采集皮肤里的静电荷 ,手指触碰键盘,会由静电摩擦效应发电。敲击按键时 ,其独特的结构使得键盘能够记录下一个个复杂的电信号 ,给每个用户创造一个模式作为与众不同的签名。

    作为具有广泛应用领域的高新科技产业,中国氟塑料正在缩小与国外先进技能水平的距离 ,往后的发展前景会愈加宽广。





    更多新闻 关注多库更多新闻资讯

    锂盐双氟磺酰亚胺锂(LiFSI)的制备及锂电池应用展望

    锂盐双氟磺酰亚胺锂(LiFSI)的制备及锂电池应用展望——锂电池电解液的核心成分探秘锂电池的电解液 ,作为电池性能的关键因素之一,其成分直接影响到电池的安全性能 、充放电效率以及使用寿命。在众多电解液成分中,双氟磺酰亚胺锂(LiFSI)因其独特的物理化学性质,逐渐成为研究的热点 。本文将深入探讨双氟磺酰亚胺锂的原料及其在锂电池中的应用前景。 1. 碳酸乙烯酯分子式为C3H4O3,它是一种透明无色的液体,在室温下为结晶固体。其沸点为248℃/760mmHg ,或在740mmHg下的243-244℃ 。闪点为160℃,密度为1.3218 ,折光率为1.4158(50℃),而熔点范围在35-38℃。碳酸乙烯酯是聚丙烯腈和聚氯乙烯的优秀溶剂,常用于纺织业的抽丝液。它还可以直接作为脱除酸性气体的溶剂,以及混凝土的添加剂 。在医药领域 ,它被用作制药的重要组分和原料。此外,它还是塑料发泡剂和合成润滑油的稳定剂。在电池工业中,碳酸乙烯酯被广泛用作锂电池电解液的优良溶剂 。2. 碳酸丙烯酯其分子式为C4H6O3。这种化学物质呈现出无色或淡黄色的透明液体状态,并且能够溶于水和四氯化碳 ,同时也能与乙醚、丙酮、苯等有机溶剂相混溶。它被广泛视为一种优质的极性溶剂,并在多个领域中发挥着关键作用,例如高分子作业、气体分离工艺以及电化学应用 。特别值得一提的是,碳酸丙烯酯在吸收天然气和石化厂合成氨原料中的二氧化碳方面表现出色,同时还可以作为增塑剂、纺丝溶剂以及烯烃和芳烃的萃取剂使用。在毒理数据方面,经过动物实验证实,口服或皮肤接触均未发现中毒迹象,大鼠经口LD50达到29000mg/kg。此外 ,为了确保安全 ,本品应储存在阴凉、通风且干燥的环境中,远离火源,并遵循一般低毒化学品的储运规定。3. 碳酸二乙酯其分子式为CH3OCOOCH3。这种化学物质呈现无色液体状态,并带有轻微气味。在23.8℃时,其蒸汽压为1.33kPa,而闪点为25℃,表明这种物质在温度升高时容易挥发并与空气混合,从而存在火灾风险。其熔点为-43℃,沸点为125.8℃。碳酸二乙酯不溶于水,但可以与醇、酮、酯等有机溶剂混溶 。这种物质的密度相对较大,稳定性良好 。在有机合成和作为溶剂方面有着广泛的应用。此外,锂离子电池中所使用的锂盐,如LiPF6、LiBF4 、LiClO4等,多数具有易水解和热稳定性较差的特性 。然而 ,双氟磺酰亚胺锂(LiFSI)作为一种新型锂盐 ,展现出了卓越的综合性能。其合成工艺先进,通过氟化剂氟化双氯磺酰亚胺得到双氟磺酰亚胺 ,再进一步锂化反应即可制得。相较于传统的六氟磷酸锂,LiFSI在电解液中具有更高的电导率、优异的热稳定性和良好的高低温性能。因此 ,LiFSI在电解液中的应用能够显著提升锂电池的循环寿命、倍率性能和安全性 ,契合了锂电池未来发展的需求。    LiFSI作为一种新型锂盐,在电解液中展现出卓越的综合性能,包括高电导率、优异的热稳定性和良好的高低温性能。因此,LiFSI有望成为锂电池中不可或缺的添加剂 ,部分替代传统的LiPF6 。尽管目前LiFSI的生产工艺相对复杂且成本较高 ,但随着未来生产工艺的成熟和产能的释放 ,其生产成本和市场价格有望显著下降 ,从而提升其性价比。此外,锂电池技术的不断更新迭代也为LiFSI带来了广阔的发展空间。国内多家企业已积极布局LiFSI的研发与生产,加速其在锂盐领域的渗透。随着新能源汽车市场的迅猛发展,新型锂盐市场也将迎来重要的增长机遇。    LiFSI的生产成本正逐步下降,凭借其出色的性能 ,其在电解液中的应用范围正日益扩大 。目前,国内已有众多企业掌握了LiFSI的制备技术。它们通常先合成双氯磺酰亚胺 ,再与氟代金属盐反应 ,经过一系列的化学反应 ,最终得到LiFSI  。国内双氟磺酰亚胺锂的总产能已达到约2.17万吨。多家知名企业均已布局该领域 ,并拥有可观的产能。行业新秀也纷纷加入 ,共同推动双氟磺酰亚胺锂市场的繁荣 。另外  ,新能源汽车行业的迅猛发展与电解液市场的持续旺盛 ,共同推动了上游锂盐市场的蓬勃发展。双氟磺酰亚胺锂生产规模的不断扩大,无疑将进一步降低其生产成本,从而使其在锂电池电解液中的应用更加广泛。多库应持续洞悉市场行情,做好调研工作,在锂电池市场找准自己的定位,突出自己的优势,提高企业的核心竞争力!

    查看更多

    2025-05-30

    氟化玻璃技术革新引领产业升级 ,多领域应用拓展打开市场新空间 ——新材料研发与产业化进程加速,助力“双碳”战略落地 近年来 ,随着新能源 、高端制造等领域的快速发展,氟化玻璃作为高性能材料的重要分支 ,在技术突破与产业化应用上迎来多重进展。从光伏发电到红外光学 ,从精密蚀刻到环保涂料 ,氟化玻璃正以创新姿态推动产业绿色转型,成为新材料领域的热点赛道。 一、技术突破:全氟化物玻璃陶瓷与蚀刻工艺双创新 1

    ——新材料研发与产业化进程加速,助力“双碳”战略落地  近年来,随着新能源、高端制造等领域的快速发展,氟化玻璃作为高性能材料的重要分支,在技术突破与产业化应用上迎来多重进展 。从光伏发电到红外光学,从精密蚀刻到环保涂料,氟化玻璃正以创新姿态推动产业绿色转型,成为新材料领域的热点赛道 。  一 、技术突破 :全氟化物玻璃陶瓷与蚀刻工艺双创新1. 低声子全氟化物玻璃陶瓷研发进展 国内某公司在低声子全氟化物玻璃陶瓷材料领域取得重要突破 ,解决了传统氟化物玻璃因稳定性差导致的透明化难题。该材料凭借超低声子能量特性,在中波红外光学器件 、医疗激光设备等领域展现出独特优势 ,未来可广泛应用于科研与工业检测系统。  2. 玻璃蚀刻液专利提升制造精度    新研发的新型玻璃蚀刻液,通过氟化钾、氟化钠与氟硅酸铵的协同作用,结合羧甲基纤维素等添加剂 ,显著提高了蚀刻均匀性 。该技术可优化微电子玻璃器件加工工艺 ,为半导体和显示面板行业提供更高精度的解决方案。  二、应用场景扩展 :光伏与新能源领域成核心驱动力 1. 全球最薄光伏玻璃量产     我国成功量产厚度仅1.6毫米的光伏玻璃,兼具高透光率与抗腐蚀性。这一突破不仅满足了光伏组件轻量化需求,还通过盐卤资源的高效利用 ,推动“千年盐都”向千亿级新材料产业集群转型。   2. 氟化碳材料助力新能源电池   新开发的氟化碳材料 ,作为锂氟化碳电池核心正极 ,已应用于航天探测器电池 ,并拓展至民用无人机 、汽车电子等领域。其近期获得的天使轮融资将加速产线智能化改造 ,进一步降低材料成本,推动产业化进程。  三、产业链协同 :产学研融合加速技术转化1. 产学研合作模式深化    国内某公司与上海交通大学的技术合作,实现锂电级PVDF树脂与环保涂料的“双突破”,推动氟材料产业链向高端化延伸。此类模式通过整合高校研发资源与企业产业化能力,缩短了技术转化周期 。  2. 资本涌入助推技术落地   2025年1-4月,融资事件达6起,涵盖单壁碳纳米管、磁光晶体等高附加值产品。资本的青睐不仅缓解了企业研发压力,更通过市场机制加速了氟化玻璃相关技术的规模化应用。  四 、市场趋势:传统玻璃承压,氟化玻璃逆势增长当前传统浮法玻璃行业面临高库存、低利润与需求疲软三重压力,部分产线被迫冷修。相比之下,氟化玻璃凭借其在新能源与高端制造中的不可替代性逆势增长。例如,光伏玻璃需求受“双碳”政策驱动持续攀升 ,2024年产量同比增长14.33%。此外,节能玻璃 、红外光学玻璃等细分领域亦成为企业转型的重要方向。  五、挑战与展望:成本与标准制定成关键尽管氟化玻璃前景广阔,但其发展仍面临挑战:  - 成本控制:如氟化碳材料依赖高价原料,需通过全产业链优化降低成本;  - 环保标准:无PFOA涂料等环保型产品的推广需符合国际法规,倒逼企业技术升级 ;  - 产能匹配 :新兴应用需求激增与产能布局滞后之间的矛盾亟待解决。   结语氟化玻璃的技术革新与市场拓展 ,不仅是材料科学的进步,更是全球能源转型与产业升级的缩影。随着“双碳”目标的推进,氟化玻璃有望在光伏、新能源电池、高端光学等领域释放更大潜力,成为新材料产业高质量发展的标杆。未来,政策支持、资本投入与技术突破的协同效应 ,将进一步推动这一领域迈向国际竞争前沿。欢迎咨询我司产品:氟化镁 、氟化钠等高纯氟盐系列产品  !

    查看更多

    2025-05-27

    三氟甲磺酸主含量测定技术突破推动行业高质量发展

    三氟甲磺酸主含量测定技术突破推动行业高质量发展——新型检测方法助力医药化工精准质控2025年5月23日,随着三氟甲磺酸在医药合成、化工催化、新能源材料等领域的广泛应用,其纯度检测技术的重要性日益凸显 。近期,多项创新检测方法的研发与应用为三氟甲磺酸主含量测定提供了更高精度 、更环保的解决方案 ,推动行业向标准化、高效化方向迈进。技术创新 :高灵敏度检测方法涌现抑制电导-离子色谱法  针对三氟甲磺酸生产过程中残留的氟离子 、氯离子及硫酸盐等杂质,研究人员采用高容量IonPac AS18阴离子交换柱和氢氧化钾梯度淋洗技术,成功实现了高浓度、高酸度基体下痕量杂质的分离检测。该方法重复性高(RSD<3%) ,检出限低至0.1 mg/L(氟离子) ,显著优于传统离子对色谱法 。高效液相色谱-质谱联用(HPLC-MS)  在药物杂质检测领域,HPLC-MS技术通过C18色谱柱和梯度洗脱程序,结合质谱高灵敏度特性,可精准测定三氟甲磺酸残留溶剂。例如,拉洛他赛原料中基因毒杂质三氟甲磺酸乙酯的检测限低至1.81 ppb,回收率稳定在95.4%~111.4%,为药物安全提供保障。气相色谱-质谱联用(GC-MS)  针对三氟甲磺酸酯类基因毒性杂质,顶空衍生化-GC-MS技术通过衍生剂与目标物反应生成稳定产物,结合质谱选择性监测模式,实现了痕量检测(定量限6.15 ppb),填补了该领域技术空白 。我司产品三氟甲磺酸主含量测定采用滴定法,具体如下:1.仪器设备及试剂50mL碱式滴定管、1mL微量滴定管、NaOH标准溶液、酚酞指示剂2.分析步骤①用量筒量取30ml高纯水并加入250mL玻璃锥形瓶中,将具塞的锥形瓶擦拭干净 ,称重,记为 m0。②取1.5mL三氟甲磺酸样品加入到锥形瓶中,盖紧,摇匀,待瓶温降至室温,当雾状物消失后 ,再次称重,记为m1,摇匀。③加 2-3滴酚酞指示剂 ,用0.5mol/LNaOH标准溶液滴定至溶液恰由无色变为粉色,且30秒内不变色,则记为终点 ,记录消耗Na0H标准溶液的体积为V ,同时做空白实验(用1mL微量滴定管滴定) ,并记录消耗NaOH标准溶液的体积,记为V0。3.计算:式中:X一三氟甲磺酸主成分含量,% ;C---NaOH标准溶液的浓度,mol/L;V一样品消耗NaOH标准溶液的体积 ,mL;V0一空白消耗NaOH标准溶液的体积 ,mL;M0一加入样品前容量瓶的质量 ,g;M1一加入样品后容量瓶的质量 ,g。行业应用:从实验室到产业化的跨越医药领域:三氟甲磺酸作为强酸催化剂 ,其纯度直接影响药物合成效率。例如,采用GC-MS法精准控制拉洛他赛原料中的基因毒杂质,确保药品安全性。化工制造:通过优化制备工艺,生产纯度达99.5%以上的1-乙基-3-甲基咪唑三氟甲烷磺酸盐 ,其检测流程涵盖pH值测定 、重金属分析及分光光度法,助力离子液体材料的高端化。食品安全 :江苏省农科院开发的三氟甲烷磺酸水解-HPLC法,可高效检测小麦中结合态脱氧雪腐镰刀菌烯醇(DON),水解条件温和(60℃ 、1.0 mol/L酸浓度),为粮食毒素监控提供新手段。 标准化进程:检测方法规范化我国已逐步建立三氟甲磺酸检测标准体系,涵盖重量法 、紫外线吸收法、光谱法等多种技术。例如:GB/T 6048-2006 规定了三氟甲磺酸的质量分析流程;ISO/IEC 7597:2016 针对快速溶出试验提出明确要求。此外,CMA和CNAS认证的第三方检测机构提供权威报告,推动行业检测结果互认。未来展望 :绿色化与智能化并进随着环保需求升级,甲基磺酸(MSA)体系因低污染特性逐步替代传统酚磺酸体系 。我国自主研发的MSA高速镀锡技术,通过优化镀液稳定性,降低锡耗(1.3% vs 传统4.6%),同时支持500 m/min高速生产 ,为三氟甲磺酸在高端制造中的应用开辟新场景。未来,结合人工智能与自动化仪器的智能检测系统有望进一步提升检测效率,而微流控芯片等微型化技术或将推动现场快速检测的普及。 结语  三氟甲磺酸主含量测定技术的突破 ,不仅保障了下游产品的质量与安全,更推动了医药、化工、食品等多行业的升级转型 。随着技术创新与标准完善,我国在高端化学品检测领域正迈向全球领先地位。 

    查看更多

    2025-05-23

    氟系魔术师——全氟己酸如何重塑表面科学边界

    氟系魔术师——全氟己酸如何重塑表面科学边界全氟己酸(PFHxA)作为一种重要的全氟/多氟烷基物质(PFAS),其应用领域涵盖工业制造、消费品及新兴技术,但也因环境与健康风险面临严格监管。以下是其核心应用领域的总结:1. 化工中间体与有机合成全氟己酸是含氟化合物生产的关键中间体,主要用于合成含氟表面活性剂、阻燃剂等化工产品 。例如,国内某公司将其作为PFOA的环保替代品,生产高效阻燃剂和表面活性剂,填补了国内技术空白。此外,高纯度(98%、99%)的全氟己酸在精细化工和有机合成中广泛应用,推动氟化学产业链的发展。2. 含氟表面活性剂与消费品涂层全氟己酸衍生物因防水、防油特性 ,曾广泛用于消费品领域,如纺织品(雨衣)、食品包装(披萨盒)及化妆品。然而 ,由于其在环境中持久存在且可能引发健康风险(如肝脏毒性、发育问题) ,欧盟已立法限制相关应用,要求企业逐步转向更安全的替代品。3. 电子材料与半导体制造全氟己酸的衍生物(如全氟己基磺酸)在电子行业有重要应用。例如,国内某公司开发的电子级全氟己基磺酸 ,通过专利提纯技术用于光刻胶顶部抗反射膜,提升半导体制造的精度和效率。此类高纯度材料对杂质控制要求极高(金属离子含量低于1ppb),附加值显著。4. 环境治理与焚烧技术研究全氟己酸的热解机制研究为PFAS污染治理提供了科学依据。中国合肥国家同步辐射实验室利用同步辐射技术,解析其在高温(>700°C)下的分解路径 ,优化工业焚烧工艺,减少有害副产物生成 。该研究推动了PFAS处理技术的升级 。5. 科研试剂与实验室应用作为高纯度生化试剂,全氟己酸被用于材料科学和化学研究 ,厂家提供98%和99%纯度的产品,主要服务于科研机构,禁止临床使用 。相关化合物的新兴应用(非全氟己酸直接应用) 全氟己酮灭火剂 :与全氟己酸结构相似的衍生物全氟己酮 ,因其不导电、无毒且环保的特性,成为电力设备、储能系统及新能源汽车锂电池热管理的理想灭火剂,显著降低火灾风险。锂电池热安全系统 :哲弗智能公司利用全氟己酮开发液冷散热和火灾抑制系统,为锂电池提供“安全气囊”,广泛应用于新能源车和储能领域。挑战与趋势 尽管全氟己酸在工业中具有不可替代性 ,但其环境风险促使全球加强监管 。欧盟限制其浓度(25 ppb以下),中国也在推动绿色替代和全生命周期管控 。未来,技术创新需平衡环保与效能,例如开发更短链、低毒性的替代品,或优化回收处理技术。同时,相关化合物(如全氟己酮)在新能源领域的应用展示了氟化学的可持续发展潜力 。  

    查看更多

    2025-05-20



    XML地图